
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 1

DESIGN AND CHARACTERIZATION OF HIGH SPEED

MULTIPLIER USING ADDERS

G.LAKSHMI BHARATH
1
, N.NAGA MALLIKARJUNA

2

1
PG Student, Dept of ECE, SITS, Kadapa, AP, India.

2
Associate Professor, Dept of ECE, SITS, Kadapa, AP, India.

Abstract- Binary adders are known as

important elements in the circuit designs. Many

fastest adders have been created and developed.

Parallel Prefix Adders (PPA) is one among

them. We use adders frequently in digital design

and VLSI designs, in digital design we use

adders such as half adder, full adder. By using

both adders we can implement ripple carry

adder, using ripple carry adder we can perform

addition for any number of bits. It is a serial

adder. It has a huge delay problem. With the use

of half adder, full adder delay increases. To

overcome this Parallel Prefix Adders are

preferred. In VLSI implementation parallel

prefix adders are known to have the best

performance. This paper presents an

implementation of various types of carry tree

adders (the Kogge- Stone, Sparse Kogge- Stone,

ripple Carry adder and carry look ahead

adders. And this adders where implemented on

Array multipliers to know the performance

analysis of the proposed adders. We report on

delay, area requirements. These designs of

varied on different bit widths and simulated

using xilinx14.2 version Spartan 3E FPGA,

These carry tree adders support bit width of

256.

I. INTRODUCTION

 Digital computer arithmetic is an aspect of

logic design with the objective of developing

appropriate algorithms in order to achieve an

efficient utilization of the available hardware. The

basic operations are addition, subtraction,

multiplication and division. In this, we are going to

deal with the operation of additions implemented to

the operation of multiplication. The hardware

implementation of binary addition is a fundamental

architectural component in many processors, such

as microprocessors, digital signal processors,

mobile devices and other hardware applications. In

these systems when building arithmetic logic unit

(ALU), adders play an important role for

performing the basic arithmetic operations, such as

addition, subtraction, multiplication, division, etc.

Therefore, the hardware implementation of an

effective adder is necessary to increase the

performance of ALU and, consequently, the

processor itself as a whole. Currently, a parallel

prefix adder (PPA) is considered effective adder for

performing the addition of two multi-bit numbers.

Circuit complexity and the speed of PPA are

important. Parameters at the stage of efficient

hardware implementation and, therefore, in recent

years various types of PPA with different

characteristics of the parameters have been

developed.

Figure 1. Block diagram of PPA

II. RESEARCH WORK

 The parallel prefix adder employs three

stages in pre- processing stage the generation of

Propagate and Generate signals is carried out. The

calculation of Generate (Gi) and Propagate (Pi) are

calculated when the inputs A, B are given. As

follows

Gi=Ai AND Bi Pi=Ai XOR Bi

 Gi indicates whether the Carry is

generated from that bit. Pi indicates whether Carry

is propagated from that bit. In carry generation

stage of PPA, prefix graphs can be used to describe

the tree structure. Here the tree structure consists of

grey cells, black cells, and buffers. In carry

generation stage when two pairs of generate and

propagate signals (Gm, Pm), (Gn, Pn) are given as

inputs to the carry generation stage. It computes a

pair of group generates and group propagate signals

(Gm: n, Pm: n) which are calculated as follows

https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 2

Gm: n=Gm+ (Pm.Gn), Pm: n=Pm. Pn

The black cell computes both generate and

propagate signals as output. It uses two and gates

and or gate. The grey cell computes the generate

signal only. It uses only and gate, or gate.

 In post processing stage simple adder to

generate the sum, Sum and carry out are calculated

in post processing stage as follows

Si=Pi XOR Ci-1

Cout=Gn-1 XOR (Pn-1 AND Gn-2)

If Cout is not required it can be neglected.

III. EXISTING ADDER DESIGNS

Fig. 2:4-bit Ripple Carry Adder

 The simplest way of doing binary addition

is to connect the carry-out from the previous bit to

the next bit's carry-in. Each bit takes carry-in as

one of the inputs and outputs sum and carry-out bit

and hence the name ripple carry adder. This type of

adders is built by cascading 1-bit full adders. A 4-

bit ripple carry adder is shown in Figure 2. Each

trapezoidal symbol represents a single-bit full

adder. At the top of the figure, the carry is rippled

through the adder from cin to cout.

 It can be observed in Figure 2 that the

critical path, highlighted with a solid line, is from

the least significant bit (LSB) of the input (a0 or b0)

to the most significant bit (MSB) of sum (sn-1).

Assuming each simple gate, including AND, OR

and XOR gate has a delay of 2/\ and NOT gate has

a delay of 1/\. All the gates have an area of 1 unit.

Using this analysis and assuming that each add

block is built with a 9-gate full adder, the critical

path delay is calculated as follows.

ai , bi si = 10/\

ai , bi ci+1 = 9/\

ci si = 5/\

ci ci+1 = 4/\

The critical path or the worst delay is

tRCA = {9 + (n- 2) x 4 + 5}/\ = {4n + 6}/\

As each bit takes 9 gates, the area is simply 9n for a

n-bit RCA.

A) Carry Look Ahead Adder :

 Carry Look Ahead Adder can produce

carries faster due to parallel generation of the carry

bits by using additional circuitry. This technique

uses calculation of carry signals in advance, based

on input signals. The result is reduced carry

propagation time. For example, ripple adders are

slower but use the least energy.

A carry-look ahead adder improves speed

by reducing the amount of time required to

determine carry bits. It can be contrasted with the

simpler, but usually slower (ripple carry adder), for

which the carry bit is calculated alongside the sum

bit, and each bit must wait until the previous carry

has been calculated to begin calculating its own

result and carry bits. The carry-look ahead adder

calculates one or more carry bits before the sum,

which reduces the wait time to calculate the result

of the larger value bits.

Fig. 3: 4-bit carry look ahead adder

B)4-Bit Full Adder With Look Ahead Carry:

Notice that the final output carry is

expressed as a function of the input variables in

SOP form, which is a two level AND-OR or

equivalent NAND-NAND function. To produce the

output carry for any particular stages, it is clear that

it requires only that much time required for the

signal to pass through two levels only. In effect, we

examined the inputs at all the n stages to produce

the output carry for the most significant (n-1)
th

stage. Hence the circuit for carry look ahead carry

introduces a delay of two levels. Notice that the full

look ahead scheme requires the use of OR gate

with (n+1) inputs and AND gates with numbers of

https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/
https://www.ijert.org/

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 3

inputs varying from 1 through n+1. For increasing

world lengths, it becomes unwieldy.

 Four stages carry look ahead parallel

adders are commercially available in integrated

chip form represented as a block diagrams. It is

possible to have hierarchical levels of look ahead

group carry scheme to further reduces the addition

time and make it faster. Such scheme involves

large number of gates.

Generation of all outputs carrier in the

look ahead circuit takes two more levels after the Pi

and Gi signals settle into their final values.

Two more levels produce the sums.

Fig. 4: 4-Bit Carry Look Ahead adder

implementation details

Fig.5: Internal block diagram of carry look

ahead generator

III.PROPOSED ADDERS

To resolve the delay of carry look ahead

adders, the scheme of multilevel-look ahead adders

or parallel-prefix adders can be employed.

 The idea is to compute small group of

intermediate prefixes and then find large group

prefixes, until all the carry bits are computed.

These adders have tree structures within a carry-

computing stage similar to the carry propagate

adder. However, the other two stages for these

adders are called pre-computation and post-

computation stages.

In pre-computation stage, each bit

computes its carry generate/propagate and a

temporary sum. In the prefix stage, the group carry

generate/propagate signals are computed to form

the carry chain and provide the carry-in for the

adder below.

Gi:k = Gi:j + Pi:j . Gj-1:k

 Pi:k = Pi:j . Pj-1:k

In the post-computation stage, the sum

and carry-out are finally produced. The carry-out

can be omitted if only a sum needs to be produced.

si = pi ^ Gi:-1

cout = Gi +(Pi . Gi-1)

where Gi:-1 = ci with the assumption g-1 = cin. The

general diagram of parallel-prefix structures is

shown in Figure 6, where an 8-bit case is

illustrated.

Fig. 6: 8-bit Parallel-Prefix Structure with carry

look ahead notation

All parallel-prefix structures can be

implemented with the equations above, however,

Equation can be interpreted in various ways, which

leads to different types of parallel-prefix trees. For

example, Kogge stone is known for its sparse

topology at the cost of more logic levels.

i)Building Prefix Structures:

Parallel-prefix structures are found to be

common in high performance adders because of the

delay is logarithmically proportional to the adder

width. Such structures can usually be divided into

three stages, pre-computation, prefix tree and post-

computation. In the prefix tree, group

generate/propagate are the only signals used. The

group generate/propagate equations are based on

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 4

single bit generate/propagate, which are computed

in the pre-computation stage.

gi = ai . bi

pi = ai ^ bi

where 0 < i < n, g -1 = cin and p -1 = 0.

 Sometimes, pi can be computed with OR

logic instead of an XOR gate. The OR logic is

mandatory especially when Ling's scheme is

applied. Here, the XOR logic is utilized to save a

gate for temporary sum ti.

Fig.7: Cell Definitions

In the prefix tree, group generate/propagate signals

are computed at each bit.

Gi:k = Gi:j + Pi:j . Gj-1:k

Pi:k = Pi:j . Pj-1:k

In the post-computation, the sum and carry-out are

the final output.

si = pi . Gi-1:-1

 cout = Gn:-1

where “-1” is the position of carry-input. The

generate/propagate signals can be grouped in

different fashion to get the same correct carries.

Based on different ways of grouping the

generate/propagate signals, different prefix

architectures can be created. Figure7 shows the

definitions of cells that are used in prefix

structures, including black cell and gray cell.

Black/gray cells implement the above two

equations, which will be heavily used in the

following discussion on prefix trees.

ii)Kogge-Stone Prefix Tree:
Kogge-Stone prefix tree is among the type

of prefix trees that use the fewest logic levels. A 8-

bit example is shown in Figure 8.

 In fact, Kogge-Stone is a member of

Knowles prefix tree. The numbers in the brackets

represent the maximum branch fan-out at each

logic level. The maximum fan-out is 2 in all logic

levels for all width Kogge-Stone prefix trees.

Fig. 8: 8-bit Kogge-Stone Prefix Tree

The key of building a prefix tree is how to

implement Equation according to the specific

features of that type of prefix tree and apply the

rules described in the previous section. Gray cells

are inserted similar to black cells except that the

gray cells final output carry outs instead of

intermediate G/P group.

The reason of starting with Kogge-Stone

prefix tree is that it is the easiest to build in terms

of using a program concept. The example in Figure

3.3.2.1 is 8-bit (a power of 2) prefix tree.

 It is not difficult to extend the structure to

any width if the basics are strictly followed.

The number cells for a Kogge-Stone

prefix tree can be counted as follows. Each logic

level has n-m cells, where m = 2
l level - 1

. That is,

each logic level is missing m cells. That number is

the sum of a geometric series starting from 1 to n/2

which totals to n-1. The total number of cells will

be nlog 2n subtracting the total number of cells

missing at each logic level.

Fig. 9: 8 bit Kogge-Stone adder

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 5

The arrangement of the prefix network

gives rise to various families of adders. For this

study, the focus is on the Kogge-Stone adder,

known for having minimal logic depth and fanout.

Here we designate BC as the black cell which

generates the ordered pair, the gray cell (GC)

generates the left signal only.

 The regularity of the Kogge-Stone prefix

network has built in redundancy which has

implications for fault-tolerant designs. The sparse

Kogge-Stone adder, shown in Figure 8, is also

studied. This hybrid design completes the

summation process with a 4-bit RCA allowing the

carry prefix network to be simplified.

iii) SPARSE KOGGE STONE ADDER:

 The 8-bit Sparse Kogge Stone Adder is shown in

below figure.

Fig. 10: 8 bit sparse Kogge-Stone adder

IV. IMPLEMENTATION OF PROPOSED

ADDERS ON ARRAY MULTIPLIER

Today’s digital signal processing

applications, multipliers play a major part. The

advancement in the technology, many researchers

have design different multipliers which offer either

high speed, regularity of layout, low power

consumption or less area. The combination of

above features in one multiplier, result suitable for

various high speed and low power applications of

VLSI implementation.

The adding and shift procedure is common

multiplication method. Mathematical operation

which is an abbreviate procedure of adding an

integer to itself, a specific number of times is called

multiplication. It can be defined as the multiplicand

is added to itself a number of times as specified by

the multiplier to form a result (product).

Among all arithmetic operations

multiplication requires more amount of time and

multiplication hardware requires much area. The

basic building block in the Digital signal processors

is a multiplier unit. The algorithms are performed

by Digital signal processors depends on the

performance of the multiplier operations. One of

the multiplication based operations is Multiply and

Accumulate (MAC). These multiplication based

operations are used in different applications of

Digital Signal Processing such as filtering,

convolution, Fast Fourier Transform (FFT).

Usually the MAC unit is used in microprocessors

arithmetic and logic unit.

Fig. 11: General Multiplier block

To perform an M-bit by N-bit

multiplication shown in the figure 12, the M-bit

multiplicand A = a(M-1)a(M-2)….a1ao is multiplied by

the N-bit multiplier B = b(N-1)b(N-2)….b1bo to produce

the M+N-bit product P=P(M+N-1)P(M+N-2)…P1Po. Any

multiplier consists of three stages. The first stage is

partial products generation stage. In this first stage,

the multiplicand and the multiplier are multiplied

bit by bit to produce the partial products. Second

stage is partial products addition stage. This stage

is the most important stage because it is the most

complicated stage. This stage determines the speed

of the overall multiplier and the third stage is final

addition stage. In the last stage, the all row outputs

are added using any high speed adder to generate

the output result.

Array Multiplier:
 Each bit of the multiplicand is multiplied

by a bit in the multiplier, generating N partial

products. The multiplicand shifted by some

amount, or 0 is process to generate all of these

partial products. The figure 12 shown illustrated for

an M×N multiply operation. The hardware is

directly mapped by the figure and this hardware is

called the array multiplier.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 6

 Fig.12: Partial product array for an M × N

multiplier

The figure 13 shows a 4x4 unsigned array

multiplier. Product of the multiplier and the

multiplicand results the partial products.

Fig. 13: Block diagram of 4x4 array multiplier

The ripple adders are used to add the

partial products which are generated in the

multiplication process. Thus, the carry out

generated from the least significant bit ripples to

the most significant bit of the similar row, and then

down the next row of the structure. The partial

products are generated by the AND gates and these

partial products are added in ripple fashion. Half

and Full adders are generally used to add the partial

products in each row. A full adder's inputs involve

the carrying from the previous full adder in its row

and the sum from a full adder in the above row.

V. SIMULATION RESULTS

 The simulation results are obtained from

XILINX 13.2 simulation software. Fig 14,15 shows

the simulation results of black cell and gray cell,

which are the basic elements of parallel prefix

adders, respectively.

Fig. 14: Simulation results of Black Cell

Fig. 15: Simulation results of Gray Cell

Figures 16, 17, 18 and 19 shows the simulation

result of 8-bit Ripple carry adder, Carry look

ahead adder, Koggestone adder, Sparse koggestone

adder respectively.

Fig.16: Simulation results of 8-bit RCA

INPUT: A=01100100 (100), B=01100100 (100),

C=0

OUTPUT: S=11001000 (200), C0=0

Fig. 17: Simulation results of 8-bit CLA

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 7

INPUT: A=00011001 (25), B=00001010 (10),

Cin=0

OUTPUT: S=00100011 (35), Cout=0

 Fig. 18: Simulation results of 8-bit KSA

INPUT: A=11010101 (213),

B=11101101 (237),Cin=1

OUTPUT: S=11000011 (195), Cy=1

 Fig. 19: Simulation results of 8-bit SKSA

 INPUT: A=10110111 (183),

B=01011101 (93), Cin=0

OUTPUT: S=00010100 (20), Cy=1

 Figure 20, 21, 22, and 23 shows the

simulation results of 8-bit array multipliers using

RCA, CLA, KSA and SKSA respectively.

Fig. 20: Simulation result of 8-bit array

multiplier using RCA

INPUT: A=10010110 (150), B=01100100 (100)

OUTPUT: P=0011101010011000 (15000)

Fig.21: Simulation result of 8-bit array

multiplier using CLA

INPUT: A=10100011 (163), B=01101101 (109)

OUTPUT: P=0100010101100111 (17767)

Fig. 22: Simulation results of 8-bit array

multiplier using KSA

INPUT: A=00001010 (10), B=00001010 (10)

OUTPUT: P=0000000001100100 (100)

Fig 23: Simulation results of 8-bit array

multiplier using SKSA

INPUT: A=011000100 (100), B=00001010 (10)

OUTPUT: P=0000001111101000 (1000)

I.Comparison Tables:

The following table shows comparison of delay in

adders and multipliers from synthesis results.

Table 1: Delay values in ns of various

adders

N

o.

of

bit

s

No. of

IOBs

requir

ed

Delay (ns)

Ripp

le

Carr

y

Add

er

Carr

y

Look

Ahea

d

Add

er

Koggest

one

Adder

Sparse

Koggest

one

Adder

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 8

4 14 8.95

9

8.92

0

4.457 8.334

8 26 13.2

03

13.0

47

5.800 11.122

Table 2: No. of slice LUTs occupied by various

adders

No. of

bits

No. of slice LUTs

Rippl

e

Carry

Adde

r

Carry

Look

Ahea

d

Adde

r

Koggeston

e Adder

Sparse

Koggeston

e Adder

4 4 9 6 5

8 9 92 25 8

Table 3: Delay values in ns of array multiplier

using various adders

N

o.

of

bit

s

 No.

of

IOBs

requir

ed

Delay (ns)

Ripp

le

Carr

y

Add

er

Carr

y

Look

Ahea

d

Add

er

Koggest

one

Adder

Sparse

Koggest

one

Adder

4 16 17.5

41

12.9

29

6.678 13.475

8 32 36.7

11

28.6

05

21.579 24.703

Table 4: No. of slice LUTs occupied in array

multiplier using various adders

No. of

bits

No. of slice LUTs

Rippl

e

Carry

Adde

r

Carry

Look

Ahea

d

Adde

r

Koggeston

e Adder

Sparse

Koggeston

e Adder

4 18 8 23 18

8 73 32 196 66

VI. CONCLUSION
 In this project, an efficient array multiplier using

parallel prefix adders is designed, to improve the

performance when compared to conventional array

multiplier. From the synthesis results, it is

concluded that Kogge Stone Adder is better in

terms of speed. And also the Sparse Kogge Stone

adder is a compromise between Carry Look Ahead

Adder and Kogge Stone Adder in terms of delay

and area.

REFERENCES
[1] N. H. E. Weste and D. Harris, CMOS VLSI

Design, 4
th

 edition, Pearson–Addison-Wesley,

2011.

[2] R. P. Brent and H. T. Kung, “A regular layout

for parallel adders,” IEEE Trans. Comput., vol. C-

31, pp. 260-264, 1982.

[3] D. Harris, “A Taxonomy of Parallel Prefix

Networks,” in Proc. 37th Asilomar Conf. Signals

Systems and Computers, pp. 2213–7, 2003.

[4] P. M. Kogge and H. S. Stone, “A Parallel

Algorithm for the Efficient Solution of a General

Class of Recurrence Equations,” IEEE Trans. on

Computers, Vol. C-22, No 8, August 1973.

[5] P. Ndai, S. Lu, D. Somesekhar, and K. Roy,

“Fine- Grained Redundancy in Adders,” Int. Symp.

on Quality Electronic Design, pp. 317-321, March

2007.

[6] T. Lynch and E. E. Swartzlander, “A Spanning

Tree Carry Lookahead Adder,” IEEE Trans. on

Computers, vol. 41, no. 8, pp. 931-939, Aug. 1992.

[7] D. Gizopoulos, M. Psarakis, A. Paschalis, and

Y. Zorian, “Easily Testable Cellular Carry Look

ahead Adders,” Journal of Electronic Testing:

Theory and Applications 19, 285-298, 2003.

[8] S. Xing and W. W. H. Yu, “FPGA Adders:

Performance Evaluation and Optimal Design,”

IEEE Design & Test of Computers, vol. 15, no. 1,

pp. 24-29, Jan. 1998.

[9] M. Bečvář and P. Štukjunger, “Fixed-Point

Arithmetic in FPGA,” Acta Polytechnica, vol. 45,

no. 2, pp. 67- 72, 2005.

[10] K. Vitoroulis and A. J. Al-Khalili,

“Performance of Parallel Prefix Adders

Implemented with FPGA technology,” IEEE

Northeast Workshop on Circuits and Systems, pp.

498-501, Aug. 2007. 172

[11] Krishna Kumari V, Sri Chakrapani Y, and

Kamaraju M (2013), “Design and Characterization

of Koggestone, Sparse Koggestone, Spanning Tree

and Brentkung Adders”, International Journal of

Scientific & Engineering Research, Vol. 4, No. 10,

pp. 1502-1506, ISSN 2229-5518.

[12] Al-Khalili, Dr. A.J. (2006). “Parallel Prefix

Adders”, Concordia University: Kostas Vitoroulis.

