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Abstract- Binary adders are known as 

important elements in the circuit designs. Many 

fastest adders have been created and developed. 

Parallel Prefix Adders (PPA) is one among 

them. We use adders frequently in digital design 

and VLSI designs, in digital design we use 

adders such as half adder, full adder. By using 

both adders we can implement ripple carry 

adder, using ripple carry adder we can perform 

addition for any number of bits. It is a serial 

adder. It has a huge delay problem. With the use 

of half adder, full adder delay increases. To 

overcome this Parallel Prefix Adders are 

preferred. In VLSI implementation parallel 

prefix adders are known to have the best 

performance. This paper presents an 

implementation of various types of carry tree 

adders (the Kogge- Stone, Sparse Kogge- Stone, 

ripple Carry adder and carry look ahead 

adders. And this adders where implemented on 

Array multipliers to know the performance 

analysis of the proposed adders. We report on 

delay, area requirements. These designs of 

varied on different bit widths and simulated 

using xilinx14.2 version Spartan 3E FPGA, 

These carry tree adders support bit width of 

256. 

 

I. INTRODUCTION 
 

 Digital computer arithmetic is an aspect of 

logic design with the objective of developing 

appropriate algorithms in order to achieve an 

efficient utilization of the available hardware. The 

basic operations are addition, subtraction, 

multiplication and division. In this, we are going to 

deal with the operation of additions implemented to 

the operation of multiplication. The hardware 

implementation of binary addition is a fundamental 

architectural component in many processors, such 

as microprocessors, digital signal processors, 

mobile devices and other hardware applications. In 

these systems when building arithmetic logic unit 

(ALU), adders play an important role for 

performing the basic arithmetic operations, such as 

addition, subtraction, multiplication, division, etc. 

Therefore, the hardware implementation of an 

effective adder is necessary to increase the 

performance of ALU and, consequently, the 

processor itself as a whole. Currently, a parallel 

prefix adder (PPA) is considered effective adder for 

performing the addition of two multi-bit numbers. 

Circuit complexity and the speed of PPA are 

important. Parameters at the stage of efficient 

hardware implementation and, therefore, in recent 

years various types of PPA with different 

characteristics of the parameters have been 

developed. 

 
Figure 1. Block diagram of PPA 

 

II. RESEARCH WORK 
 

 The parallel prefix adder employs three 

stages in pre- processing stage the generation of 

Propagate and Generate signals is carried out. The 

calculation of Generate (Gi) and Propagate (Pi) are 

calculated when the inputs A, B are given. As 

follows 

Gi=Ai AND Bi Pi=Ai XOR Bi 

 Gi indicates whether the Carry is 

generated from that bit. Pi indicates whether Carry 

is propagated from that bit. In carry generation 

stage of PPA, prefix graphs can be used to describe 

the tree structure. Here the tree structure consists of 

grey cells, black cells, and buffers. In carry 

generation stage when two pairs of generate and 

propagate signals (Gm, Pm), (Gn, Pn) are given as 

inputs to the carry generation stage. It computes a 

pair of group generates and group propagate signals 

(Gm: n, Pm: n) which are calculated as follows 
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Gm: n=Gm+ (Pm.Gn), Pm: n=Pm. Pn 

The black cell computes both generate and 

propagate signals as output. It uses two and gates 

and or gate. The grey cell computes the generate 

signal only. It uses only and gate, or gate. 

 In post processing stage simple adder to 

generate the sum, Sum and carry out are calculated 

in post processing stage as follows 

Si=Pi XOR Ci-1 

Cout=Gn-1 XOR (Pn-1 AND Gn-2) 

If Cout is not required it can be neglected. 

 

III. EXISTING ADDER DESIGNS 
 

 
Fig. 2:4-bit Ripple Carry Adder 

 

 The simplest way of doing binary addition 

is to connect the carry-out from the previous bit to 

the next bit's carry-in. Each bit takes carry-in as 

one of the inputs and outputs sum and carry-out bit 

and hence the name ripple carry adder. This type of 

adders is built by cascading 1-bit full adders. A 4-

bit ripple carry adder is shown in Figure 2. Each 

trapezoidal symbol represents a single-bit full 

adder. At the top of the figure, the carry is rippled 

through the adder from cin to cout. 

 It can be observed in Figure 2 that the 

critical path, highlighted with a solid line, is from 

the least significant bit (LSB) of the input (a0 or b0) 

to the most significant bit (MSB) of sum (sn-1). 

Assuming each simple gate, including AND, OR 

and XOR gate has a delay of 2/\ and NOT gate has 

a delay of 1/\. All the gates have an area of 1 unit. 

Using this analysis and assuming that each add 

block is built with a 9-gate full adder, the critical 

path delay is calculated as follows. 

ai , bi  si = 10/\ 

ai , bi  ci+1 = 9/\ 

ci  si = 5/\ 

ci  ci+1 = 4/\ 

The critical path or the worst delay is 

tRCA = {9 + (n- 2) x 4 + 5}/\ = {4n + 6}/\ 

As each bit takes 9 gates, the area is simply 9n for a 

n-bit RCA. 

 

A) Carry Look Ahead Adder : 

 Carry Look Ahead Adder can produce 

carries faster due to parallel generation of the carry 

bits by using additional circuitry. This technique 

uses calculation of carry signals in advance, based 

on input signals. The result is reduced carry 

propagation time. For example, ripple adders are 

slower but use the least energy. 

A carry-look ahead adder improves speed 

by reducing the amount of time required to 

determine carry bits. It can be contrasted with the 

simpler, but usually slower (ripple carry adder), for 

which the carry bit is calculated alongside the sum 

bit, and each bit must wait until the previous carry 

has been calculated to begin calculating its own 

result and carry bits. The carry-look ahead adder 

calculates one or more carry bits before the sum, 

which reduces the wait time to calculate the result 

of the larger value bits.  

 
Fig. 3: 4-bit carry look ahead adder 

B)4-Bit Full Adder With Look Ahead Carry: 

Notice that the final output carry is 

expressed as a function of the input variables in 

SOP form, which is a two level AND-OR or 

equivalent NAND-NAND function. To produce the 

output carry for any particular stages, it is clear that 

it requires only that much time required for the 

signal to pass through two levels only. In effect, we 

examined the inputs at all the n stages to produce 

the output carry for the most significant (n-1)
th

 

stage. Hence the circuit for carry look ahead carry 

introduces a delay of two levels. Notice that the full 

look ahead scheme requires the use of OR gate 

with (n+1) inputs and AND gates with numbers of 
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inputs varying from 1 through n+1. For increasing 

world lengths, it becomes unwieldy.  

 Four stages carry look ahead parallel 

adders are commercially available in integrated 

chip form represented as a block diagrams. It is 

possible to have hierarchical levels of look ahead 

group carry scheme to further reduces the addition 

time and make it faster. Such scheme involves 

large number of gates. 

Generation of all outputs carrier in the 

look ahead circuit takes two more levels after the Pi 

and Gi  signals settle into their final values.   

Two more levels produce the sums. 

 
Fig. 4: 4-Bit Carry Look Ahead adder 

implementation details 

  

 
Fig.5: Internal block diagram of carry look 

ahead generator 

 

III.PROPOSED ADDERS 

To resolve the delay of carry look ahead 

adders, the scheme of multilevel-look ahead adders 

or parallel-prefix adders can be employed. 

 The idea is to compute small group of 

intermediate prefixes and then find large group 

prefixes, until all the carry bits are computed. 

These adders have tree structures within a carry-

computing stage similar to the carry propagate 

adder. However, the other two stages for these 

adders are called pre-computation and post-

computation stages.  

In pre-computation stage, each bit 

computes its carry generate/propagate and a 

temporary sum. In the prefix stage, the group carry 

generate/propagate signals are computed to form 

the carry chain and provide the carry-in for the 

adder below. 

Gi:k = Gi:j + Pi:j . Gj-1:k 

                            Pi:k = Pi:j .  Pj-1:k 

In the post-computation stage, the sum 

and carry-out are finally produced. The carry-out 

can be omitted if only a sum needs to be produced. 

si = pi  ^  Gi:-1 

cout = Gi +(Pi . Gi-1) 

where Gi:-1 = ci with the assumption g-1 = cin. The 

general diagram of parallel-prefix structures is 

shown in Figure 6, where an 8-bit case is 

illustrated. 

 
Fig. 6: 8-bit Parallel-Prefix Structure with carry 

look ahead notation 

All parallel-prefix structures can be 

implemented with the equations above, however, 

Equation can be interpreted in various ways, which 

leads to different types of parallel-prefix trees. For 

example, Kogge stone is known for its sparse 

topology at the cost of more logic levels.  

  

i)Building Prefix Structures: 

Parallel-prefix structures are found to be 

common in high performance adders because of the 

delay is logarithmically proportional to the adder 

width. Such structures can usually be divided into 

three stages, pre-computation, prefix tree and post-

computation. In the prefix tree, group 

generate/propagate are the only signals used. The 

group generate/propagate equations are based on 
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single bit generate/propagate, which are computed 

in the pre-computation stage. 

gi = ai . bi 

pi = ai ^ bi 

where 0 < i < n, g -1 = cin and p -1 = 0. 

  Sometimes, pi can be computed with OR 

logic instead of an XOR gate. The OR logic is 

mandatory especially when Ling's scheme is 

applied. Here, the XOR logic is utilized to save a 

gate for temporary sum ti. 

 
Fig.7: Cell Definitions 

In the prefix tree, group generate/propagate signals 

are computed at each bit. 

 

Gi:k = Gi:j + Pi:j . Gj-1:k 

Pi:k = Pi:j .  Pj-1:k 

In the post-computation, the sum and carry-out are 

the final output. 

si = pi .  Gi-1:-1 

                                cout = Gn:-1 

where “-1” is the position of carry-input. The 

generate/propagate signals can be grouped in 

different fashion to get the same correct carries. 

Based on different ways of grouping the 

generate/propagate signals, different prefix 

architectures can be created. Figure7 shows the 

definitions of cells that are used in prefix 

structures, including black cell and gray cell. 

Black/gray cells implement the above two 

equations, which will be heavily used in the 

following discussion on prefix trees. 

ii)Kogge-Stone Prefix Tree: 
Kogge-Stone prefix tree is among the type 

of prefix trees that use the fewest logic levels. A 8-

bit example is shown in Figure 8. 

 In fact, Kogge-Stone is a member of 

Knowles prefix tree.  The numbers in the brackets 

represent the maximum branch fan-out at each 

logic level. The maximum fan-out is 2 in all logic 

levels for all width Kogge-Stone prefix trees. 

 
Fig. 8: 8-bit Kogge-Stone Prefix Tree 

The key of building a prefix tree is how to 

implement Equation according to the specific 

features of that type of prefix tree and apply the 

rules described in the previous section. Gray cells 

are inserted similar to black cells except that the 

gray cells final output carry outs instead of 

intermediate G/P group.  

The reason of starting with Kogge-Stone 

prefix tree is that it is the easiest to build in terms 

of using a program concept. The example in Figure 

3.3.2.1 is 8-bit (a power of 2) prefix tree. 

 It is not difficult to extend the structure to 

any width if the basics are strictly followed. 

The number cells for a Kogge-Stone 

prefix tree can be counted as follows. Each logic 

level has n-m cells, where m = 2 
l level - 1

. That is, 

each logic level is missing m cells. That number is 

the sum of a geometric series starting from 1 to n/2 

which totals to n-1. The total number of cells will 

be nlog 2n subtracting the total number of cells 

missing at each logic level. 

 
Fig. 9: 8 bit Kogge-Stone adder 
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The arrangement of the prefix network 

gives rise to various families of adders. For this 

study, the focus is on the Kogge-Stone adder, 

known for having minimal logic depth and fanout. 

Here we designate BC as the black cell which 

generates the ordered pair, the gray cell (GC) 

generates the left signal only.  

 The regularity of the Kogge-Stone prefix 

network has built in redundancy which has 

implications for fault-tolerant designs. The sparse 

Kogge-Stone adder, shown in Figure 8, is also 

studied. This hybrid design completes the 

summation process with a 4-bit RCA allowing the 

carry prefix network to be simplified. 

 

iii) SPARSE KOGGE STONE ADDER: 

   The  8-bit Sparse Kogge Stone Adder is shown in 

below figure. 

 

 

 
Fig. 10:  8 bit sparse Kogge-Stone adder 

 

 

 

IV. IMPLEMENTATION OF PROPOSED 

ADDERS ON ARRAY MULTIPLIER 
 

Today’s digital signal processing 

applications, multipliers play a major part. The 

advancement in the technology, many researchers 

have design different multipliers which offer either 

high speed, regularity of layout, low power 

consumption or less area. The combination of 

above features in one multiplier, result suitable for 

various high speed and low power applications of 

VLSI implementation.  

The adding and shift procedure is common 

multiplication method. Mathematical     operation 

which is an abbreviate procedure of adding an 

integer to itself, a specific number of times is called 

multiplication. It can be defined as the multiplicand 

is added to itself a number of times as specified by 

the multiplier to form a result (product).  

Among all arithmetic operations 

multiplication requires more amount of time and 

multiplication hardware requires much area. The 

basic building block in the Digital signal processors 

is a multiplier unit. The algorithms are performed 

by Digital signal processors depends on the 

performance of the multiplier operations. One of 

the multiplication based operations is Multiply and 

Accumulate (MAC). These multiplication based 

operations are used in different applications of 

Digital Signal Processing such as filtering, 

convolution, Fast Fourier Transform (FFT). 

Usually the MAC unit is used in microprocessors 

arithmetic and logic unit.   

 
Fig. 11: General Multiplier block 

To perform an M-bit by N-bit 

multiplication shown in the figure 12, the M-bit  

multiplicand  A = a(M-1)a(M-2)….a1ao is multiplied by 

the N-bit multiplier B = b(N-1)b(N-2)….b1bo to produce 

the M+N-bit product P=P(M+N-1)P(M+N-2)…P1Po. Any 

multiplier consists of three stages. The first stage is 

partial products generation stage. In this first stage, 

the multiplicand and the multiplier are multiplied 

bit by bit to produce the partial products. Second 

stage is partial products addition stage. This stage 

is the most important stage because it is the most 

complicated stage. This stage determines the speed 

of the overall multiplier and the third stage is final 

addition stage. In the last stage, the all row outputs 

are added using any high speed adder to generate 

the output result. 

Array Multiplier: 
  Each bit of the multiplicand is multiplied 

by a bit in the multiplier, generating N partial 

products. The multiplicand shifted by some 

amount, or 0 is process to generate all of these 

partial products. The figure 12 shown illustrated for 

an M×N multiply operation. The hardware is 

directly mapped by the figure and this hardware is 

called the array multiplier. 
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 Fig.12: Partial product array for an M × N 

multiplier               
 

The figure 13 shows a 4x4 unsigned array 

multiplier. Product of the multiplier and the 

multiplicand results the partial products. 

 

 
Fig. 13: Block diagram of 4x4 array multiplier 

The ripple adders are used to add the 

partial products which are generated in the 

multiplication process. Thus, the carry out 

generated from the least significant bit ripples to 

the most significant bit of the similar row, and then 

down the next row of the structure. The partial 

products are generated by the AND gates and these 

partial products are added in ripple fashion. Half 

and Full adders are generally used to add the partial 

products in each row. A full adder's inputs involve 

the carrying from the previous full adder in its row 

and the sum from a full adder in the above row. 

 

V. SIMULATION RESULTS 

 The simulation results are obtained from 

XILINX 13.2 simulation software. Fig 14,15 shows 

the simulation results of black cell and gray cell, 

which are the basic elements of parallel prefix 

adders, respectively. 

 
Fig. 14: Simulation results of Black Cell 

 

 
Fig. 15: Simulation results of Gray Cell 

 

Figures 16, 17, 18 and 19 shows the simulation 

result of  8-bit Ripple carry adder, Carry look 

ahead adder, Koggestone adder, Sparse koggestone 

adder respectively. 

 
Fig.16: Simulation results of 8-bit RCA 

 

INPUT: A=01100100 (100), B=01100100 (100), 

C=0 

OUTPUT: S=11001000 (200), C0=0 

 
Fig. 17: Simulation results of 8-bit CLA 
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INPUT: A=00011001 (25), B=00001010 (10), 

Cin=0 

OUTPUT: S=00100011 (35), Cout=0 

 
  Fig. 18: Simulation results of  8-bit KSA 

 

INPUT: A=11010101 (213),  

B=11101101 (237),Cin=1 

OUTPUT: S=11000011 (195), Cy=1 

 
 Fig. 19: Simulation results of 8-bit SKSA 

 

 INPUT: A=10110111 (183),  

B=01011101 (93), Cin=0 

OUTPUT: S=00010100 (20), Cy=1 

             Figure 20, 21, 22, and 23 shows the 

simulation results of 8-bit array multipliers using 

RCA, CLA, KSA and SKSA respectively. 

 
Fig. 20: Simulation result of 8-bit array 

multiplier using RCA 

 

INPUT: A=10010110 (150), B=01100100 (100) 

OUTPUT: P=0011101010011000 (15000) 

Fig.21: Simulation result of 8-bit array 

multiplier using CLA 

 

INPUT: A=10100011 (163), B=01101101 (109) 

OUTPUT: P=0100010101100111 (17767) 

 
Fig. 22: Simulation results of 8-bit array 

multiplier using KSA 

 

INPUT: A=00001010 (10), B=00001010 (10) 

OUTPUT: P=0000000001100100 (100) 

      

 
Fig 23: Simulation results of 8-bit array 

multiplier using SKSA 

 

INPUT: A=011000100 (100), B=00001010 (10) 

OUTPUT: P=0000001111101000 (1000) 

I.Comparison Tables: 

The following table shows comparison of  delay in 

adders and multipliers from synthesis results. 

 

Table 1: Delay values in ns of various 

adders 

N

o. 

of 

bit

s 

No. of 

IOBs 

requir

ed 

Delay (ns) 

Ripp

le 

Carr

y 

Add

er 

Carr

y 

Look 

Ahea

d 

Add

er 

 

Koggest

one 

Adder 

Sparse 

Koggest

one 

Adder 
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4 14 8.95

9 

8.92

0 

4.457 8.334 

8 26 13.2

03 

13.0

47 

5.800 11.122 

 

Table 2: No. of slice LUTs occupied by various 

adders 

No. of 

bits 

No. of slice LUTs 

Rippl

e 

Carry 

Adde

r 

Carry 

Look 

Ahea

d 

Adde

r 

 

Koggeston

e Adder 

Sparse 

Koggeston

e Adder 

4  4 9 6  5 

8 9 92 25 8 

   

Table 3: Delay values in ns of  array multiplier 

using various adders 

N

o. 

of 

bit

s 

 No. 

of 

IOBs 

requir

ed 

Delay (ns) 

Ripp

le 

Carr

y 

Add

er 

Carr

y 

Look 

Ahea

d 

Add

er 

 

Koggest

one 

Adder 

Sparse 

Koggest

one 

Adder 

4 16 17.5

41 

12.9

29 

6.678 13.475 

8 32 36.7

11 

28.6

05 

21.579 24.703 

 

Table 4: No. of slice LUTs occupied in array 

multiplier using various adders 

No. of 

bits 

No. of slice LUTs 

Rippl

e 

Carry 

Adde

r 

Carry 

Look 

Ahea

d 

Adde

r 

 

Koggeston

e Adder 

Sparse 

Koggeston

e Adder 

4  18 8 23 18 

8 73 32 196 66 

 

VI. CONCLUSION 
     In this project, an efficient array multiplier using 

parallel prefix adders is designed, to improve the 

performance when compared to conventional array 

multiplier. From the synthesis results, it is 

concluded that Kogge Stone Adder is better in 

terms of speed.  And also the Sparse Kogge Stone 

adder is a compromise between Carry Look Ahead 

Adder and Kogge Stone Adder in terms of delay 

and area.  
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